Assessment Schedule - 2007

Mathematics: Draw straightforward non-linear graphs (90285)

Evidence Statement

	Assessment Criteria	No.	Evidence	Code	Judgement	Sufficiency
	Draw straight- forward non- linear graphs.	1(a)		A	Correct shape and smoothly drawn through (-2,0) (0,-4) (1,0).	ACHIEVEMENT: THREE A
Achievement		1(b)	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	А	Correct shape and smoothly drawn through $(-2,0)$ $(0,-6)$ $(3,0)$ and goes below $y = -6$.	
		1(0)	7	A	Correct shape and smoothly drawn through (0,1) and approaches the <i>x</i> -axis.	

	Draw non- linear graphs AND Use non-linear graphs to solve problems	1(d)		A M1	Correct shape and smoothly drawn through (1,1) and approaches an asymptote at $x = 0$. The graph must not touch the y -axis. Correct shape and smoothly drawn through (2,1), (-6,1), (-2,5), (-2,-3).	ACHIEVEMENT WITH MERIT: Achievement plus FOUR M(M1 or M2) OR THREE M1 plus TWO M2
Merit		2(a)	xy = 8	M2	Or equivalent.	
_		2(b)	$y = -(x+1)(x-2)^2$	M2	Or equivalent.	
		3(a)	105 M 107 M	А М1	Correct shape and smoothly drawn through at least two correct points. At least one asymptote indicated at $x = 0.25$ or $y = 8$.	
		3(b)	The cost of producing each cheesecake decreases as <i>n</i> increases and cheesecake price gets closer to \$8.	M2	The \$8 must be mentioned appropriately in the explanation.	

Excellence	Determine and apply an appropriate model for a situation involving graphs	4	Put axes at bottom of parabola. Parabolas are: $y_1 = -ax^2 + 12$ $y_2 = -bx^2 - 16$ Find a $0 = -a(\sqrt{2})^2 + 12$ $a = 6$ Find b $12 = b(x - 4)(x + 4)$ $12 = b \times 4 \times 12$ $b = 0.25$ so $y_1 = -6x^2 + 12$ and $y_2 = 0.25x^2 - 4$ To find the horizontal distance for parabola y_1 $9 = -6x^2 + 12$ $x^2 = 0.5$ $x = \sqrt{0.5}$ for parabola y_2 $9 = 0.25x^2 - 4$ $36 = x^2 - 16$ $52 = x^2$ $x = \sqrt{52}$ Thickness of cake = $\sqrt{52} - \sqrt{0.5} = 6.5cm(2sf)$	M2 M2	Must have supporting working and a logical argument. Alternative methods acceptable. Accept a minor error in working.	ACHIEVEMENT WITH EXCELLENCE: Merit plus E
------------	---	---	--	----------	---	---

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence	
Draw straightforward non-linear graphs.	Draw non-linear graphs. Use non-linear graphs to solve	Determine and apply an appropriate model for a situation involving graphs.	
	problems.		
	Achievement plus	Merit plus	
$3 \times A$	$4 \times M (M1 \ or \ M2)$	1×E	
	or 3 of M1 plus two of M2		

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.